
5 Cauchy–Riemann equations

5.1 Cauchy–Riemann equations

Recall that we call f : E −→ C holomorphic in domain E, if it is differentiable at every point in E.
We need a simple tool to determine differentiability other then the main definition, which is quite
tedious to apply in each particular case. We expect, of course, that complex differentiability must be
connected somehow with differentiability of two real valued functions u, v, which we find “inside” our
complex function:

f(z) = f(x+ iy) = u(x, y) + iv(x, y).

We start with

Proposition 5.1. Assume that f : E −→ C is differentiable at z = z0 = x0 + iy0. Then at this
point (x0, y0) there exist partial derivatives u′x, u

′
y, v

′
x, v

′
y and, moreover, they satisfy Cauchy–Riemann

equations
∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) ,

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0) . (5.1)

Proof. First I need to show that these partial derivatives exist. I have

f(z + h)− f(z)

h
→ f ′(z)

for any h and hence for real ones. For real h, in more details,

u(x+ h, y)− u(x, y)

h
+ i

v(x+ h, y)− v(x, y)

h
→ f ′(z).

Since the left limit exists, it implies that for both real and imaginary parts limits exist (think this
out!) but these limits by definition are u′x, v

′
x. Similarly, assuming that h is pure imaginary, I can

show that u′y, v
′
y exist.

Now I will differentiate f with respect to x using the chain rule:

∂f

∂x
(z) = f ′(z)

∂z

∂x
= f ′(z) = u′x + ivx.

Similarly,
∂f

∂y
(z) = f ′(z)

∂z

∂y
= if ′(z) = u′y + ivy.

After multiplying the last equality by −i I must conclude that equations (5.1) hold. �

It would be great to have a converse statement, but in general the converse is not true (see
homework problems). It can be proved (I will give a natural proof somewhat later in our course, a
direct proof can be found in the textbook) that

Proposition 5.2. Assume that u′x, u
′
y, v

′
x, v

′
y exist, satisfy (5.1) and continuous at z0. Then f is

differentiable at z0.
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For a little headache: the converse statement to this proposition also false in general!
To show that holomorphic functions are “nice,” I state one more result, which proof will be given

later.

Proposition 5.3. An f : E −→ C is holomorphic in E if and only if ux, uy, vx, vy exist, continuous,
and satisfy (5.1) in E.

Example 5.4. We know that z2 is entire. Not surprisingly,

u(x, y) = x2 − y2, v(x, y) = 2xy,

and (5.1) hold at every point of C.

Example 5.5. Let f(z) = z̄2. Then

u(x, y) = x2 − y2, v(x, y) = −2xy,

and (5.1) hold only at x = y = 0. Hence I can conclude that my f is not differentiable (and hence
not holomorphic) at any point (x, y) ̸= (0, 0), and, by Proposition 5.2, it is differentiable (but still not
holomorphic) at the origin.

Here is our first theoretical (quite natural) result that uses (5.1).

Proposition 5.6. Let E be a domain (i.e., open, connected set) and f : E −→ C be holomorphic in
E and f ′(z) = 0 for all z ∈ E. Then f must be constant.

Proof. Since f is assumed to be holomorphic, we have that Cauchy–Riemann equations hold at each
point of E and moreover

u′x = u′y = v′x = v′y = 0.

This implies that both real functions u, v must be constant: u(x, y) = A, v(x, y) = B. Therefore,

f(z) = A+ iB = C.

�

Sometimes we know just one part (real or imaginary) of a holomorphic function f . We can always
find another one as the following example shows.

Example 5.7. Let
u(x, y) = 2ex cos y

be known. Which function v would make f = u+ iv holomorphic in C?
I have

∂u

∂x
= 2ex cos y = (5.1) =

∂v

∂y
=⇒ v(x, y) =

∫
2ex cos y dy = 2ex sin y + φ(x).

Moreover,

∂v

∂x
= 2ex sin y + φ′(x) = (5.1) = −∂u

∂y
= 2ex sin y =⇒ φ′(x) = 0 =⇒ φ(x) = C.

If we fix one value of our f , e.g., f(0) = 2, we can uniquely determine

f(z) = f(x+ iy) = 2ex cos y + 2iex sin y.

2



5.2 Geometric meaning of f ′(z) and conformal mappings

Recall that f : E −→ C geometrically a map from one plane to another. Assume that we have a point
M in plane z and a half-line emanating from this point. In plane w I will have point M∗ = f(M) and
a curve to which this half-line being mapped. Let N be a point on the half-line at distance ρ from M
and N∗ be its image under f . Consider the ratio of the corresponding distances

M∗N∗

MN
=

1

ρ

√
(u(x+ ρ cos θ, y + ρ sin θ)− u(x, y))2 + (v(x+ ρ cos θ, y + ρ sin θ)− v(x, y))2 .

Take the limit ρ → 0. Assuming that u, v are differentiable, we’ll get

λ = lim
ρ→0

M∗N∗

MN
=

√
(u′x cos θ + u′y sin θ)

2 + (v′x cos θ + v′y sin θ)
2 .

Quantity λ is called linear magnification ratio. When it does not depend on θ?. Rewriting

λ2 = A cos2 θ + 2B cos θ sin θ + C sin2 θ,

where
A = (u′x)

2 + (v′x)
2, B = u′xu

′
y + v′xv

′
y, C = (u′y)

2 + (v′y)
2,

I obtain (fill in the details) that λ does not depend on θ if and only if

A = C, B = 0.

Now let me calculate the angle between MN and M∗N∗. For MN I have

µ = tan θ,

for M∗N∗ it is
v(x+ ρ cos θ, y + ρ sin θ)− v(x, y)

u(x+ ρ cos θ, y + ρ sin θ)− u(x, y)
,

which tends to

tanφ = ν =
v′x cos θ + v′y sin θ

v′x cos θ + v′y sin θ
=

v′x + v′yµ

u′x + u′yµ
,

as ρ → 0.
Now

ξ = tan(φ− θ) =
ν − µ

1 + νµ
=

v′x + (v′y − u′x)µ− u′yµ
2

u′x + (u′y + v′x)µ+ v′yµ
2
.

φ is called a rotation of f at M with respect to a given half-line. This rotation will not depend on θ
if and only if

v′x = ξu′x, (v′y − u′x) = ξ(u′y + v′x), −u′y = ξv′y,

where ξ does not depend on θ.
Now to the main point.

Definition 5.8. Map f : E −→ C is called conformal in E if at each point z ∈ E its linear magnifi-
cation factor and rotation do not depend on the direction θ.
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Almost immediately, I have

Proposition 5.9. Assume that f is holomorphic in E. Then f is conformal at every point z where
f ′(z) ̸= 0.

Moreover, by carefully analyzing the given conditions the student can conclude that the converse
also holds! Therefore, being conformal is a characterization of holomorphic functions.

Now you can see the main geometric property of conformal (or holomorphic) maps: they do not
change angles between any two curves under this map. Indeed, since rotation does not depend on the
direction θ, any half-line at a given point will be rotated by the same angle φ and hence the angle
between two curves will not change.

Remark 5.10. We can also ask a natural question: Which maps have only λ not depending on θ? I
will leave it as an exercise to show that in this case we’ll end up either with holomorphic f , for which
(5.1) holds, or with a map for which u′x = −v′y, u

′
x = v′y. These are not Cauchy–Riemann equation,

and they will hold for functions of the form s = f(z̄), where f is holomorphic. Thus geometrically we
also have a reflection with respect to the real axis, such maps are called anti-conformal : they keep
the angles, but change the orientation.

Now we can state the geometric meaning of complex derivative. Assume that f is holomorphic in
E. Hence I have (it does not depend on θ, hence I can take θ = 0)

λ =
√

(u′x)
2 + (v′x)

2 = |f ′(z)|,
φ = arctan ξ = arg f ′(z),

or in words, the modulus of the derivative geometrically is a linear magnification ratio, and the
argument of the derivative (assuming f ′(z) ̸= 0) is the rotation at a given point.

Example 5.11. Jumping a little ahead let me take

f(z) =
1

z
.

Since, as expected, (
1

z

)′
= − 1

z2
,

then

|f ′(z)| = 1

r2
, arg f ′(z) = π − 2 arg f(z),

which indicates that figures close the origin are magnified by the action of f , far from the origin —
reduced.

5.3 More about differentiability

5.4 A glimpse of Wirtinger calculus
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